DeepISP: Toward Learning an End-to-End Image Processing PipelineDownload PDFOpen Website

2019 (modified: 14 Nov 2022)IEEE Trans. Image Process. 2019Readers: Everyone
Abstract: We present DeepISP, a full end-to-end deep neural model of the camera image signal processing pipeline. Our model learns a mapping from the raw low-light mosaiced image to the final visually compelling image and encompasses low-level tasks, such as demosaicing and denoising, as well as higher-level tasks, such as color correction and image adjustment. The training and evaluation of the pipeline were performed on a dedicated data set containing pairs of low-light and well-lit images captured by a Samsung S7 smartphone camera in both raw and processed JPEG formats. The proposed solution achieves the state-of-the-art performance in objective evaluation of peak signal-to-noise ratio on the subtask of joint denoising and demosaicing. For the full end-to-end pipeline, it achieves better visual quality compared to the manufacturer ISP, in both a subjective human assessment and when rated by a deep model trained for assessing image quality.
0 Replies

Loading