FTFT: efficient and robust Fine-Tuning by transFerring Training dynamics

22 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Model Robustness, Training Efficiency, Data Pruning
TL;DR: We propose a novel approach for fine-tuning pre-trained language models, which yields both better efficiency and better robustness over conventional ERM fine-tuning
Abstract: Despite the massive success of fine-tuning large Pre-trained Language Models (PLMs) on a wide range of Natural Language Processing (NLP) tasks, they remain susceptible to out-of-distribution (OOD) and adversarial inputs. Data map (DM) is a simple yet effective dual-model approach that enhances the robustness of fine-tuned PLMs, which involves fine-tuning a model on the original training set (i.e. reference model), selecting a specified fraction of important training examples according to the training dynamics of the reference model, and fine-tuning the same model on these selected examples (i.e. main model). However, it suffers from the drawback of requiring fine-tuning the same model twice, which is computationally expensive for large models. In this paper, we first show that 1) training dynamics are highly transferable across different model sizes and different pre-training methods, and that 2) main models fine-tuned using DM learn faster than when using conventional Empirical Risk Minimization (ERM). Building on these observations, we propose a novel fine-tuning approach based on the DM method: Fine-Tuning by transFerring Training dynamics (FTFT). Compared with DM, FTFT uses more efficient reference models and then fine-tunes more capable main models for fewer steps. Our experiments show that FTFT achieves better generalization robustness than ERM while spending less than half of the training cost.
Supplementary Material: zip
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5743
Loading