BrainWash: A Poisoning Attack to Forget in Continual Learning

Published: 01 Jan 2024, Last Modified: 16 May 2025CVPR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Continual learning has gained substantial attention within the deep learning community, offering promising solutions to the challenging problem of sequential learning. Yet, a largely unexplored facet of this paradigm is its susceptibility to adversarial attacks, especially with the aim of inducing forgetting. In this paper, we introduce “Brain-Wash,” a novel data poisoning method tailored to impose forgetting on a continual learner. By adding the Brain-Wash noise to a variety of baselines, we demonstrate how a trained continual learner can be induced to forget its previously learned tasks catastrophically, even when using these continual learning baselines. An important feature of our approach is that the attacker requires no access to previous tasks' data and is armed merely with the model's current parameters and the data belonging to the most recent task. Our extensive experiments highlight the efficacy of Brain Wash, showcasing degradation in performance across various regularization and memory replay-based continual learning methods. Our code is available here: https://github.com/mint-vuIBrainwash
Loading