Gibbs Sampling from Human Feedback: A Provable KL- constrained Framework for RLHF

Published: 01 Jan 2023, Last Modified: 18 May 2025CoRR 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper studies the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF). We first identify the primary challenges of existing popular methods like offline PPO and offline DPO as lacking in strategical exploration of the environment. Then, to understand the mathematical principle of RLHF, we consider a standard mathematical formulation, the reverse-KL regularized contextual bandit for RLHF. Despite its widespread practical application, a rigorous theoretical analysis of this formulation remains open. We investigate its behavior in three distinct settings -- offline, online, and hybrid -- and propose efficient algorithms with finite-sample theoretical guarantees. Moving towards practical applications, our framework, with a robust approximation of the information-theoretical policy improvement oracle, naturally gives rise to several novel RLHF algorithms. This includes an iterative version of the Direct Preference Optimization (DPO) algorithm for online settings, and a multi-step rejection sampling strategy for offline scenarios. Our empirical evaluations on real-world alignment experiment of large language model demonstrate that these proposed methods significantly surpass existing strong baselines, such as DPO and Rejection Sampling Optimization (RSO), showcasing the connections between solid theoretical foundations and their potent practical implementations.
Loading