Abstract: Recently, the rapid diffusion of malicious information in online social networks causes great harm to our society. Therefore, it is of great significance to localize diffusion sources as early as possible to stem the spread of malicious information. This paper proposes a novel sensor-based method, called greedy full-order neighbor localization (denoted as GFNL), to solve this problem under a low infection propagation in line with the real world. More specifically, GFNL includes two main components, i.e., the greedy-based sensor deployment strategy (DS) and direction-path-based source estimation strategy (ES). In more detail, to ensure sensors can observe a propagation information as early as possible, a set of sensors is deployed in a network to minimize the geodesic distance (i.e., the distance of the shortest path) between the candidate set and the sensor set based on DS. Then when a fraction of sensors observe a propagation, ES infers the source based on the idea that the distance of the actual propagation path is proportional to the observed time. Compared with some state-of-the-art methods, comprehensive experiments have proved the superiority and robustness of our proposed GFNL.
0 Replies
Loading