Domain adaptation for improving automatic airborne pollen classification with expert-verified measurements

Published: 01 Jan 2025, Last Modified: 15 Jun 2025Appl. Intell. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This study presents a novel approach to enhance the accuracy of automatic classification systems for airborne pollen particles by integrating domain adaptation techniques. Our method incorporates expert-verified measurements into the convolutional neural network (CNN) training process to address the discrepancy between laboratory test data and real-world environmental measurements. We systematically fine-tuned CNN models, initially developed on standard reference datasets, with these expert-verified measurements. A comprehensive exploration of hyperparameters was conducted to optimize the CNN models, ensuring their robustness and adaptability across various environmental conditions and pollen types. Empirical results indicate a significant improvement, evidenced by a 22.52% increase in correlation and a 38.05% reduction in standard deviation across 29 cases of different pollen classes over multiple study years. This research highlights the potential of domain adaptation techniques in environmental monitoring, particularly in contexts where the integrity and representativeness of reference datasets are difficult to verify.
Loading