Using Sum-Product Networks to estimate neural population structure in the brain Download PDF

Published: 21 Oct 2022, Last Modified: 05 May 2023AI4Science PosterReaders: Everyone
Keywords: Probabilistic circuits, sum product networks, computational neuroscience
Abstract: We present a computationally efficient framework to model a wide range of population structures with high order correlations and a large number of neurons. Our method is based on a special type of Bayesian network that has linear inference time and is founded upon the concept of contextual independence. Moreover, we use an efficient architecture learning method for network selection to model large neural populations even with a small amount of data. Our framework is both fast and accurate in approximating neural population structures. Furthermore, our approach enables us to reliably quantify higher order neural correlations. We test our method on publicly available large-scale neural recordings from the Allen Brain Observatory. Our approach significantly outperforms other models both in terms of statistical measures and alignment with experimental evidence.
0 Replies