Understanding In-Context Learning from Repetitions

Published: 16 Jan 2024, Last Modified: 15 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: In-context learning, Large language models, Repetition
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: This paper explores the elusive mechanism underpinning in-context learning in Large Language Models (LLMs). Our work provides a novel perspective by examining in-context learning via the lens of surface repetitions. We quantitatively investigate the role of surface features in text generation, and empirically establish the existence of \emph{token co-occurrence reinforcement}, a principle that strengthens the relationship between two tokens based on their contextual co-occurrences. Furthermore, we find similar reinforcements lie behind the pretraining corpus, revealing the existence is due to LLMs' efforts to maximize the likelihood. By investigating the dual impacts of these features, our research illuminates the internal workings of in-context learning and expounds on the reasons for its failures. This paper provides an essential contribution to the understanding of in-context learning and its potential limitations, providing a fresh perspective on this exciting capability.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: general machine learning (i.e., none of the above)
Submission Number: 1749
Loading