Forecasting the future of artificial intelligence with machine learning-based link prediction in an exponentially growing knowledge network

Published: 01 Jan 2023, Last Modified: 08 Oct 2024Nat. Mac. Intell. 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: A tool that could suggest new personalized research directions and ideas by taking insights from the scientific literature could profoundly accelerate the progress of science. A field that might benefit from such an approach is artificial intelligence (AI) research, where the number of scientific publications has been growing exponentially over recent years, making it challenging for human researchers to keep track of the progress. Here we use AI techniques to predict the future research directions of AI itself. We introduce a graph-based benchmark based on real-world data—the Science4Cast benchmark, which aims to predict the future state of an evolving semantic network of AI. For that, we use more than 143,000 research papers and build up a knowledge network with more than 64,000 concept nodes. We then present ten diverse methods to tackle this task, ranging from pure statistical to pure learning methods. Surprisingly, the most powerful methods use a carefully curated set of network features, rather than an end-to-end AI approach. These results indicate a great potential that can be unleashed for purely ML approaches without human knowledge. Ultimately, better predictions of new future research directions will be a crucial component of more advanced research suggestion tools. The number of publications in artificial intelligence (AI) has been increasing exponentially and staying on top of progress in the field is a challenging task. Krenn and colleagues model the evolution of the growing AI literature as a semantic network and use it to benchmark several machine learning methods that can predict promising research directions in AI.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview