Keywords: two-sample testing, independence testing, testing by betting, sequential testing
TL;DR: Sequential nonparametric two-sample and independence testing by betting
Abstract: We study the problems of sequential nonparametric two-sample and independence testing. Sequential tests process data online and allow using observed data to decide whether to stop and reject the null hypothesis or to collect more data, while maintaining type I error control. We build upon the principle of (nonparametric) testing by betting, where a gambler places bets on future observations and their wealth measures evidence against the null hypothesis. While recently developed kernel-based betting strategies often work well on simple distributions, selecting a suitable kernel for high-dimensional or structured data, such as images, is often nontrivial. To address this drawback, we design prediction-based betting strategies that rely on the following fact: if a sequentially updated predictor starts to consistently determine (a) which distribution an instance is drawn from, or (b) whether an instance is drawn from the joint distribution or the product of the marginal distributions (the latter produced by external randomization), it provides evidence against the two-sample or independence nulls respectively. We empirically demonstrate the superiority of our tests over kernel-based approaches under structured settings. Our tests can be applied beyond the case of independent and identically distributed data, remaining valid and powerful even when the data distribution drifts over time.
Supplementary Material: zip
Submission Number: 9661
Loading