Abstract: Disseminating and incorporating logic rules inspired by domain knowledge in Deep Neural Networks (DNNs) is desirable to make their output causally interpretable, reduce data dependence, and provide some human supervision during training to prevent undesirable outputs. Several methods have been proposed for that purpose but performing end-to-end training while keeping the DNNs informed about logical constraints remains a challenging task. In this paper, we propose a novel method to disseminate logic rules in DNNs for Sentence-level Binary Sentiment Classification. In particular, we couple a Rule-Mask Mechanism with a DNN model which given an input sequence predicts a vector containing binary values corresponding to each token that captures if applicable a linguistically motivated logic rule on the input sequence. We compare our method with a number of state-of-the-art baselines and demonstrate its effectiveness. We also release a new Twitter-based dataset specifically constructed to test logic rule dissemination methods and propose a new heuristic approach to provide automatic high-quality labels for the dataset.
0 Replies
Loading