Momentum-accelerated Diffusion Process for Faster Training and Sampling

20 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Diffusion Model, Training Acceleration, Optimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Diffusion models (DMs) have been adopted across diverse fields with its remarkable abilities in capturing intricate data distributions. In this paper, we propose a Fast Diffusion Model (FDM) to significantly speed up DMs from a stochastic optimization perspective for both faster training and sampling. We first find that the diffusion process of DMs accords with the stochastic optimization process of stochastic gradient descent (SGD) on a stochastic time-variant problem. Then, inspired by momentum SGD that uses both gradient and an extra momentum to achieve faster and more stable convergence than SGD, we integrate momentum into the diffusion process of DMs. This comes with a unique challenge of deriving the noise perturbation kernel from the momentum-based diffusion process. To this end, we frame the process as a Damped Oscillation system whose critically damped state---the kernel solution---avoids oscillation and yields a faster convergence speed of the diffusion process. Empirical results show that our FDM can be applied to several popular DM frameworks, e.g., VP, VE, and EDM, and reduces their training cost by about 50% with comparable image synthesis performance on CIFAR-10, FFHQ, and AFHQv2 datasets. Moreover, FDM decreases their sampling steps by about 3x to achieve similar performance under the same samplers. The codes are in the attached supplementary material and will be released online.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2248
Loading