What cleaves? Is proteasomal cleavage prediction reaching a ceiling?Download PDF

09 Oct 2022 (modified: 05 May 2023)LMRL 2022 PaperReaders: Everyone
Keywords: Epitope Vaccine, Proteasomal Cleavage, LSTM, CNN, Transformer
TL;DR: A benchmark study on proteasomal cleavage prediction reveals that most methods achieve similar performance.
Abstract: Epitope vaccines are a promising direction to enable precision treatment for cancer, autoimmune diseases, and allergies. Effectively designing such vaccines requires accurate prediction of proteasomal cleavage in order to ensure that the epitopes in the vaccine are presented to T cells by the major histocompatibility complex (MHC). While direct identification of proteasomal cleavage in vitro is cumbersome and low throughput, it is possible to implicitly infer cleavage events from the termini of MHC-presented epitopes, which can be detected in large amounts thanks to recent advances in high-throughput MHC ligandomics. Inferring cleavage events in such a way provides an inherently noisy signal which can be tackled with new developments in the field of deep learning that supposedly make it possible to learn predictors from noisy labels. Inspired by such innovations, we sought to modernize proteasomal cleavage predictors by benchmarking a wide range of recent methods, including LSTMs, transformers, CNNs, and denoising methods, on a recently introduced cleavage dataset. We found that increasing model scale and complexity appeared to deliver limited performance gains, as several methods reached about 88.5\% AUC on C-terminal and 79.5\% AUC on N-terminal cleavage prediction. This suggests that the noise and/or complexity of proteasomal cleavage and the subsequent biological processes of the antigen processing pathway are the major limiting factors for predictive performance rather than the specific modeling approach used. While biological complexity can be tackled by more data and better models, noise and randomness inherently limit the maximum achievable predictive performance. All our datasets and experiments are available at https://anonymous.4open.science/r/cleavage_prediction-E8FD.
0 Replies