More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using SparsityDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024ICLR 2023 posterReaders: Everyone
Keywords: 51x51 kernel, Large kernel convolution, convolutional neural networks, sparsity, backbone
TL;DR: We propose Sparse Large Kernel Network (SLaK), a pure CNN architectures equipped with 51x51 kernels that can perform on par with or better than the state-of-the-art hierarchical Transformers and modern ConvNets.
Abstract: Transformers have quickly shined in the computer vision world since the emergence of Vision Transformers (ViTs). The dominant role of convolutional neural networks (CNNs) seems to be challenged by increasingly effective transformer-based models. Very recently, a couple of advanced convolutional models strike back with large kernels motivated by the local-window attention mechanism, showing appealing performance and efficiency. While one of them, i.e. RepLKNet, impressively manages to scale the kernel size to 31x31 with improved performance, the performance starts to saturate as the kernel size continues growing, compared to the scaling trend of advanced ViTs such as Swin Transformer. In this paper, we explore the possibility of training extreme convolutions larger than 31x31 and test whether the performance gap can be eliminated by strategically enlarging convolutions. This study ends up with a recipe for applying extremely large kernels from the perspective of sparsity, which can smoothly scale up kernels to 61x61 with better performance. Built on this recipe, we propose Sparse Large Kernel Network (SLaK), a pure CNN architecture equipped with sparse factorized 51x51 kernels that can perform on par with or better than state-of-the-art hierarchical Transformers and modern ConvNet architectures like ConvNeXt and RepLKNet, on ImageNet classification as well as a wide range of downstream tasks including semantic segmentation on ADE20K, object detection on PASCAL VOC 2007, and object detection/segmentation on MS COCO. Codes are available at https://github.com/VITA-Group/SLaK.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2207.03620/code)
27 Replies

Loading