SGDiff: Scene Graph Guided Diffusion Model for Image Collaborative SegCaptioning

Published: 01 Jan 2025, Last Modified: 22 Jul 2025AAAI 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Controllable image semantic understanding tasks, such as captioning or segmentation, necessitate users to input a prompt (e.g., text or bounding boxes) to predict a unique outcome, presenting challenges such as high-cost prompt input or limited information output. This paper introduces a new task ``Image Collaborative Segmentation and Captioning'' (SegCaptioning), which aims to translate a straightforward prompt, like a bounding box around an object, into diverse semantic interpretations represented by (caption, masks) pairs, allowing flexible result selection by users. This task poses significant challenges, including accurately capturing a user's intention from a minimal prompt while simultaneously predicting multiple semantically aligned caption words and masks. Technically, we propose a novel Scene Graph Guided Diffusion Model that leverages structured scene graph features for correlated mask-caption prediction. Initially, we introduce a Prompt-Centric Scene Graph Adaptor to map a user's prompt to a scene graph, effectively capturing his intention. Subsequently, we employ a diffusion process incorporating a Scene Graph Guided Bimodal Transformer to predict correlated caption-mask pairs by uncovering intricate correlations between them. To ensure accurate alignment, we design a Multi-Entities Contrastive Learning loss to explicitly align visual and textual entities by considering inter-modal similarity, resulting in well-aligned caption-mask pairs. Extensive experiments conducted on two datasets demonstrate that SGDiff achieves superior performance in SegCaptioning, yielding promising results for both captioning and segmentation tasks with minimal prompt input.
Loading