Test-Time Alignment of Discrete Diffusion Models with Sequential Monte Carlo

Published: 01 Jan 2025, Last Modified: 10 Oct 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Discrete diffusion models have become highly effective across various domains. However, real-world applications often require the generative process to adhere to certain constraints. To this end, we propose a Sequential Monte Carlo (SMC) framework that enables scalable inference-time control of discrete diffusion models through principled importance weighting and optimal proposal construction. Specifically, our approach derives tractable importance weights for a range of intermediate targets and characterises the optimal proposal, for which we develop two practical approximations: a first-order gradient-based approximation and an amortised proposal trained to minimise the log-variance of the importance weights. Empirical results across synthetic tasks, language modelling, biology design, and text-to-image generation demonstrate that our framework enhances controllability and sample quality, highlighting the effectiveness of SMC as a versatile recipe for scaling discrete diffusion models at inference time.
Loading