Abstract: Uncertainty quantification and robustness to distribution shifts are important goals in machine learning and artificial intelligence. Although Bayesian Neural Networks (BNNs) allow for uncertainty in the predictions to be assessed, different sources of uncertainty are indistinguishable. We present Imprecise Bayesian Neural Networks (IBNNs); they generalize and overcome some of the drawbacks of standard BNNs. These latter are trained using a single prior and likelihood distributions, whereas IBNNs are trained using credal prior and likelihood sets. They allow to distinguish between aleatoric and epistemic uncertainties, and to quantify them. In addition, IBNNs are more robust than BNNs to prior and likelihood misspecification, and to distribution shift. They can also be used to compute sets of outcomes that enjoy probabilistic guarantees. We apply IBNNs to two case studies. One, for motion prediction in autonomous driving scenarios, and two, to model blood glucose and insulin dynamics for artificial pancreas control. We show that IBNNs performs better when compared to an ensemble of BNNs benchmark.
Submission Length: Long submission (more than 12 pages of main content)
Assigned Action Editor: ~Manuel_Haussmann1
Submission Number: 1573
Loading