Markerless Motion Tracking With Noisy Video and IMU DataDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 05 Nov 2023IEEE Trans. Biomed. Eng. 2023Readers: Everyone
Abstract: italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Objective:</i> Marker-based motion capture, considered the gold standard in human motion analysis, is expensive and requires trained personnel. Advances in inertial sensing and computer vision offer new opportunities to obtain research-grade assessments in clinics and natural environments. A challenge that discourages clinical adoption, however, is the need for careful sensor-to-body alignment, which slows the data collection process in clinics and is prone to errors when patients take the sensors home. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Methods:</i> We propose deep learning models to estimate human movement with noisy data from videos (VideoNet), inertial sensors (IMUNet), and a combination of the two (FusionNet), obviating the need for careful calibration. The video and inertial sensing data used to train the models were generated synthetically from a marker-based motion capture dataset of a broad range of activities and augmented to account for sensor-misplacement and camera-occlusion errors. The models were tested using real data that included walking, jogging, squatting, sit-to-stand, and other activities. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Results:</i> On calibrated data, IMUNet was as accurate as state-of-the-art models, while VideoNet and FusionNet reduced mean <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> std root-mean-squared errors by 7.6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 5.4 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{\circ }$</tex-math></inline-formula> and 5.9 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 3.3 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{\circ }$</tex-math></inline-formula> , respectively. Importantly, all the newly proposed models were less sensitive to noise than existing approaches, reducing errors by up to 14.0 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 5.3 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{\circ }$</tex-math></inline-formula> for sensor-misplacement errors of up to 30.0 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 13.7 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{\circ }$</tex-math></inline-formula> and by up to 7.4 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 5.5 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{\circ }$</tex-math></inline-formula> for joint-center-estimation errors of up to 101.1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 11.2 mm, across joints. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Conclusion:</i> These tools offer clinicians and patients the opportunity to estimate movement with research-grade accuracy, without the need for time-consuming calibration steps or the high costs associated with commercial products such as Theia3D or Xsens, helping democratize the diagnosis, prognosis, and treatment of neuromusculoskeletal conditions.
0 Replies

Loading