Generalized Natural Gradient Flows in Hidden Convex-Concave Games and GANsDownload PDF

Published: 28 Jan 2022, Last Modified: 13 Feb 2023ICLR 2022 PosterReaders: Everyone
Abstract: Game-theoretic formulations in machine learning have recently risen in prominence, whereby entire modeling paradigms are best captured as zero-sum games. Despite their popularity, however, their dynamics are still poorly understood. This lack of theory is often substantiated with painful empirical observations of volatile training dynamics and even divergence. Such results highlight the need to develop an appropriate theory with convergence guarantees that are powerful enough to inform practice. This paper studies the generalized Gradient Descent-Ascent (GDA) flow in a large class of non-convex non-concave Zero-Sum games dubbed Hidden Convex-Concave games, a class of games that includes GANs. We focus on two specific geometries: a novel geometry induced by the hidden convex-concave structure that we call the hidden mapping geometry and the Fisher information geometry. For the hidden mapping geometry, we prove global convergence under mild assumptions. In the case of Fisher information geometry, we provide a complete picture of the dynamics in an interesting special setting of team competition via invariant function analysis.
Supplementary Material: zip
5 Replies