Knowledge Enhanced Pre-training for Cross-lingual Dense Retrieval

Published: 01 Jan 2024, Last Modified: 23 Jan 2025LREC/COLING 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In recent years, multilingual pre-trained language models (mPLMs) have achieved significant progress in cross-lingual dense retrieval. However, most mPLMs neglect the importance of knowledge. Knowledge always conveys similar semantic concepts in a language-agnostic manner, while query-passage pairs in cross-lingual retrieval also share common factual information. Motivated by this observation, we introduce KEPT, a novel mPLM that effectively leverages knowledge to learn language-agnostic semantic representations. To achieve this, we construct a multilingual knowledge base using hyperlinks and cross-language page alignment data annotated by Wiki. From this knowledge base, we mine intra- and cross-language pairs by extracting symmetrically linked segments and multilingual entity descriptions. Subsequently, we adopt contrastive learning with the mined pairs to pre-train KEPT. We evaluate KEPT on three widely-used benchmarks, considering both zero-shot cross-lingual transfer and supervised multilingual fine-tuning scenarios. Extensive experimental results demonstrate that KEPT achieves strong multilingual and cross-lingual retrieval performance with significant improvements over existing mPLMs.
Loading