Structural Fairness-aware Active Learning for Graph Neural Networks

Published: 16 Jan 2024, Last Modified: 11 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Active Learning, Graph Neural Networks, Structural Fairness
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Graph Neural Networks (GNNs) have seen significant achievements in semi-supervised node classification. Yet, their efficacy often hinges on access to high-quality labeled node samples, which may not always be available in real-world scenarios. While active learning is commonly employed across various domains to pinpoint and label high-quality samples based on data features, graph data present unique challenges due to their intrinsic structures that render nodes non-i.i.d. Furthermore, biases emerge from the positioning of labeled nodes; for instance, nodes closer to the labeled counterparts often yield better performance. To better leverage graph structure and mitigate structural bias in active learning, we present a unified optimization framework (SCARCE), which is also easily incorporated with node features. Extensive experiments demonstrate that the proposed method not only improves the GNNs performance but also paves the way for more fair results.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning on graphs and other geometries & topologies
Submission Number: 8658
Loading