Keywords: geometric deep learning, symmetric spaces, hyperbolic spaces, SPD manifolds
Abstract: Recent works have demonstrated promising performances of neural networks on hyperbolic spaces and symmetric positive definite (SPD) manifolds. These spaces belong to a family of Riemannian manifolds referred to as symmetric spaces of noncompact type. In this paper, we propose a novel approach for developing neural networks on such spaces. Our approach relies on a unified formulation of the distance from a point to a hyperplane on the considered spaces. We show that some existing formulations of the point-to-hyperplane distance can be recovered by our approach under specific settings. Furthermore, we derive a closed-form expression for the point-to-hyperplane distance in higher-rank symmetric spaces of noncompact type equipped with G-invariant Riemannian metrics. The derived distance then serves as a tool to design fully-connected (FC) layers and an attention mechanism for neural networks on the considered spaces. Our approach is validated on challenging benchmarks for image classification, electroencephalogram (EEG) signal classification, image generation, and natural language inference.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9679
Loading