Abstract: In this paper, we contrast the resolution and accuracy of determining recombination boundaries using genotyping arrays compared to high-throughput sequencing. In addition, we consider the impacts of sequence coverage and genetic diversity on localizing recombination boundaries. We developed a hidden Markov model for estimating recombination breakpoints based on variant observations seen in the read coverage spanning uniformly sized genomic windows. Our model includes 36 states representing all combinations of 8 genomes, and estimates a founder mosaic that is consistent with the variants observed in the aligned sequences. At HMM transition locations we consider the most likely founder-pair and refine the recombination breakpoints down to an interval spanning two informative variants. We compare this solution to alternate solutions based on microarrays that we have estimated. At 30x coverage the recombination mapping accuracy far exceeds the resolution attainable by any microarray. Even at coverages of 1x and below we are generally able to estimate recombination breakpoints with comparable accuracy.
Loading