Aux-NAS: Exploiting Auxiliary Labels with Negligibly Extra Inference Cost

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Auxiliary Learning; Neural Architecture Search; Soft Parameter Sharing; Multi-Task Learning; Single Task Inference Cost
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a novel soft-parameter sharing architecture-based method optimized by Neural Architecture Search, which exploits auxiliary task labels to boost the primary task performance without increasing the inference cost for the primary task.
Abstract: We aim at exploiting additional auxiliary labels from an independent (auxiliary) task to boost the primary task performance which we focus on, while preserving a single task inference cost of the primary task. While most existing auxiliary learning methods are optimization-based relying on loss weights/gradients manipulation, our method is architecture-based with a flexible asymmetric structure for the primary and auxiliary tasks, which produces different networks for training and inference. Specifically, starting from two single task networks/branches (each representing a task), we propose a novel method with evolving networks where only primary-to-auxiliary links exist as the cross-task connections after convergence. These connections can be removed during the primary task inference, resulting in a single-task inference cost. We achieve this by formulating a Neural Architecture Search (NAS) problem, where we initialize bi-directional connections in the search space and guide the NAS optimization converging to an architecture with only the single-side primary-to-auxiliary connections. Moreover, our method can be incorporated with optimization-based auxiliary learning approaches. Extensive experiments with six tasks on NYU v2, CityScapes, and Taskonomy datasets using VGG, ResNet, and ViT backbones validate the promising performance. The codes are available at https://github.com/ethanygao/Aux-NAS.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 1619
Loading