LRP: learned robust data partitioning for efficient processing of large dynamic queries

Published: 01 Jan 2025, Last Modified: 20 May 2025Frontiers Comput. Sci. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The interconnection between query processing and data partitioning is pivotal for the acceleration of massive data processing during query execution, primarily by minimizing the number of scanned block files. Existing partitioning techniques predominantly focus on query accesses on numeric columns for constructing partitions, often overlooking non-numeric columns and thus limiting optimization potential. Additionally, these techniques, despite creating fine-grained partitions from representative queries to enhance system performance, experience from notable performance declines due to unpredictable fluctuations in future queries. To tackle these issues, we introduce LRP, a learned robust partitioning system for dynamic query processing. LRP first proposes a method for data and query encoding that captures comprehensive column access patterns from historical queries. It then employs Multi-Layer Perceptron and Long Short-Term Memory networks to predict shifts in the distribution of historical queries. To create high-quality, robust partitions based on these predictions, LRP adopts a greedy beam search algorithm for optimal partition division and implements a data redundancy mechanism to share frequently accessed data across partitions. Experimental evaluations reveal that LRP yields partitions with more stable performance under incoming queries and significantly surpasses state-of-the-art partitioning methods.
Loading