Robustness May be More Brittle than We Think under Different Degrees of Distribution Shifts

16 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Out-of-distribution generalization, distribution shift
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Out-of-distribution (OOD) generalization is a complicated problem due to the idiosyncrasies of possible distribution shifts between training and test domains. Most benchmarks employ diverse datasets to address this issue; however, the degree of the distribution shift between the training domains and the test domains of each dataset remains largely fixed. This may lead to biased conclusions that either underestimate or overestimate the actual OOD performance of a model. Our study delves into a more nuanced evaluation setting that covers a broad range of shift degrees. We show that the robustness of models can be quite brittle and inconsistent under different degrees of distribution shifts, and therefore one should be more cautious when drawing conclusions from evaluations under a limited range of degrees. In addition, we observe that large-scale pre-trained models, such as CLIP, are sensitive to even minute distribution shifts of novel downstream tasks. This indicates that while pre-training may improve downstream in-distribution performance, it could have minimal or even adverse effects on generalization in certain OOD scenarios of the downstream task. In light of these findings, we encourage future research to conduct evaluations across a broader range of shift degrees whenever possible.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 506
Loading