Abstract: Although the accuracy of load forecasting has been studied by many works, the actual deployability of a model is rarely considered. In this work, we consider the actual deployability of a model from four aspects: 1) the prediction performance of the model; 2) the robustness of the model; 3) the dependence of the model on external data; and 4) the storage size of the model. From these four aspects, we propose a multiple wavelet convolutional neural network (MWCNN) for load forecasting. On two public data sets, we verified the performance and robustness of the MWCNN. The MWCNN only uses load data, and the storage size of the model is only 497 kB, which shows that MWCNN has good deployability. In addition, our MWCNN prediction results are interpretable. The experimental results show that the MWCNN can effectively capture the periodic characteristics of load data.
0 Replies
Loading