ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities

ICLR 2025 Conference Submission8995 Authors

27 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Long Context LLM, Retrieval-augmented generation
Abstract: In this work, we introduce ChatQA 2, an Llama 3.0-based model with a 128K context window, designed to bridge the gap between open-source LLMs and leading proprietary models (e.g., GPT-4-Turbo) in long-context understanding and retrieval-augmented generation (RAG) capabilities. These two capabilities are essential for LLMs to process large volumes of information that cannot fit into a single prompt and are complementary to each other, depending on the downstream tasks and computational budgets. We present a detailed continued training recipe to extend the context window of Llama3-70B-base from 8K to 128K tokens, along with a three-stage instruction tuning process to enhance the model's instruction-following, RAG performance, and long-context understanding capabilities. Our results demonstrate that the Llama3-ChatQA-2-70B model outperforms most existing state-of-the-art models, including GPT-4-Turbo-2024-04-09, Qwen2-72B-Instruct, and Llama3.1-70B-Instruct, on ultra-long tasks beyond 100K tokens, as well as on the RAG benchmark using only a 4K context window, showing the strong long context capability across varying sequence lengths. We further provide extensive comparisons between direct long-context and RAG solutions using the same state-of-the-art long-context LLMs. Interestingly, we find that the performance of strong long-context LLMs using RAG improves when retrieving a larger number of chunks. With a large set of top-k chunks, RAG consistently outperforms direct long-context solution using the same state-of-the-art long-context models (e.g., Llama3-ChatQA-2-70B and Qwen2-72B-Instruct) on both 32K benchmarks and real-world 128K tasks. To advance research in this field, we open-sourced the model weights, training data, and the evaluation setup for the for the community.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8995
Loading