Challenges, evaluation and opportunities for open-world learning

Published: 01 Jan 2024, Last Modified: 27 Sept 2024Nat. Mac. Intell. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Environmental changes can profoundly impact the performance of artificial intelligence systems operating in the real world, with effects ranging from overt catastrophic failures to non-robust behaviours that do not take changing context into account. Here we argue that designing machine intelligence that can operate in open worlds, including detecting, characterizing and adapting to structurally unexpected environmental changes, is a critical goal on the path to building systems that can solve complex and relatively under-determined problems. We present and distinguish between three forms of open-world learning (OWL)—weak, semi-strong and strong—and argue that a fully developed OWL system should be antifragile, rather than merely robust. An antifragile system, an example of which is the immune system, is not only robust to adverse events, but adapts to them quickly and becomes better at handling them in subsequent encounters. We also argue that, because OWL approaches must be capable of handling the unexpected, their practical evaluation can pose an interesting conceptual problem. AI systems operating in the real world unavoidably encounter unexpected environmental changes and need a built-in robustness and capability to learn fast, making use of advances such as lifelong and few-shot learning. Kejriwal et al. discuss three categories of such open-world learning and discuss applications such as self-driving cars and robotic inspection.
Loading