CertainlyUncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness

Published: 22 Jan 2025, Last Modified: 08 Apr 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: multimodal, refusals, hallucinations
Abstract: The ability to acknowledge the inevitable uncertainty in their knowledge and reasoning is a prerequisite for AI systems to be truly truthful and reliable. In this paper, we present a taxonomy of uncertainty specific to vision-language AI systems, distinguishing between epistemic uncertainty (arising from a lack of information) and aleatoric uncertainty (due to inherent unpredictability), and further explore finer categories within. Based on this taxonomy, we synthesize a benchmark dataset, CertainlyUncertain, featuring 178K visual question answering (VQA) samples as contrastive pairs. This is achieved by 1) inpainting images to make previously answerable questions into unanswerable ones; and 2) using image captions to prompt large language models for both answerable and unanswerable questions. Additionally, we introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error, to address the shortcomings of existing metrics. Despite the recent rapid progress in vision-language models (VLMs), evaluations on our benchmark show that they perform poorly in uncertain scenarios. Further experiments demonstrate that supervised fine-tuning with CertainlyUncertain enhances the performance of VLMs, and reduces the calibration error. These improvements extend beyond our benchmark to existing refusal-oriented datasets and show positive results on reducing hallucinations, while maintaining performance on standard VQA benchmarks. Our work underscores the importance of addressing uncertainty in vision-language AI systems to improve their reliability and trustworthiness in real-world applications.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3901
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview