Many-Objective Evolutionary Influence Maximization: Balancing Spread, Budget, Fairness, and Time

Published: 01 Jan 2024, Last Modified: 25 Jan 2025GECCO Companion 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The Influence Maximization (IM) problem seeks to discover the set of nodes in a graph that can spread the information propagation at most. This problem is known to be NP-hard, and it is usually studied by maximizing the influence (spread) and, optionally, optimizing a second objective, such as minimizing the seed set size or maximizing the influence fairness. In this work, we propose a first case study where several IM-specific objective functions, namely budget, fairness, communities, and time, are optimized on top of the maximization of influence and minimization of the seed set size. To this aim, we introduce MOEIM (Many-Objective Evolutionary Algorithm for Influence Maximization), a Multi-Objective Evolutionary Algorithm (MOEA) based on NSGA-II incorporating graph-aware operators and a smart initialization. We compare MOEIM in two experimental settings, including a total of nine graph datasets, two heuristic methods, a related MOEA, and a state-of-the-art Deep Learning approach. The experiments show that MOEIM overall outperforms the competitors in most of the tested many-objective settings. The codebase and Supplementary Material of this work are available at https://github.com/eliacunegatti/MOEIM.
Loading