Accelerating Training with Neuron Interaction and Nowcasting Networks

Published: 22 Jan 2025, Last Modified: 27 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: accelerated optimization, parameter prediction, graphs, transformers, learning to optimize
TL;DR: We present a meta-model predicting future parameters along the SGD/Adam-optimization trajectories using graphs of neurons and graph neural networks to speed up training of neural networks.
Abstract: Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. Recently, Jang et al. (2023) proposed a simpler approach to accelerate training based on weight nowcaster networks (WNNs). In their approach, Adam is used for most of the optimization steps and periodically, only every few steps, a WNN nowcasts (predicts near future) parameters. We improve WNNs by proposing neuron interaction and nowcasting (NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters. We further show that in some networks, such as Transformers, modeling neuron connectivity accurately is challenging. We address this and other limitations, which allows NiNo to accelerate Adam training by up to 50% in vision and language tasks.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3202
Loading