Grammar-guided Linear Genetic Programming for Dynamic Job Shop Scheduling

Published: 01 Jan 2023, Last Modified: 11 Feb 2025GECCO 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Dispatching rules are commonly used to make instant decisions in dynamic scheduling problems. Linear genetic programming (LGP) is one of the effective methods to design dispatching rules automatically. However, the effectiveness and efficiency of LGP methods are limited due to the large search space. Exploring the entire search space of programs is inefficient for LGP since a large number of programs might contain redundant blocks and might be inconsistent with domain knowledge, which would further limit the effectiveness of the produced LGP models. To improve the performance of LGP in dynamic job shop scheduling problems, this paper proposes a grammar-guided LGP to make LGP focus more on promising programs. Our dynamic job shop scheduling simulation results show that the proposed grammar-guided LGP has better training efficiency than basic LGP, and can produce solutions with good explanations. Further analyses show that grammar-guided LGP significantly improves the overall test effectiveness when the number of LGP registers increases.
Loading