Learning Probabilistic Topological Representations Using Discrete Morse TheoryDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: Topological Representation, Discrete Morse Theory, Persistent Homology
TL;DR: We use discrete Morse theory and persistent homology to construct an one-parameter family of structures as the topological/structural representation space to perform inference tasks.
Abstract: Accurate delineation of fine-scale structures is a very important yet challenging problem. Existing methods use topological information as an additional training loss, but are ultimately making pixel-wise predictions. In this paper, we propose a novel deep learning based method to learn topological/structural. We use discrete Morse theory and persistent homology to construct a one-parameter family of structures as the topological/structural representation space. Furthermore, we learn a probabilistic model that can perform inference tasks in such a topological/structural representation space. Our method generates true structures rather than pixel-maps, leading to better topological integrity in automatic segmentation tasks. It also facilitates semi-automatic interactive annotation/proofreading via the sampling of structures and structure-aware uncertainty.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
18 Replies

Loading