Modelling Microbial Communities with Graph Neural Networks

24 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: graph neural networks, microbial communities, microbiology, genomes
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Understanding the interactions and interplay of microorganisms is a great challenge with many applications in medical and environmental settings. In this work, we model bacterial communities directly from their genomes using graph neural networks (GNNs). GNNs leverage the inductive bias induced by the set nature of bacteria, enforcing permutation invariance and granting combinatorial generalization. We propose to learn the dynamics implicitly by directly predicting community relative abundance profiles at steady state, thus escaping the need for growth curves. On two real-world datasets, we show for the first time generalization to unseen bacteria and different community structures. To investigate the prediction results more deeply, we created a simulation for flexible data generation and analyze effects of bacteria interaction strength, community size, and training data amount.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9504
Loading