Abstract: State-of-the-art methods for Human-AI Teaming and Zero-shot Cooperation focus on task completion, i.e., task rewards, as the sole evaluation metric while being agnostic to how the two agents work with each other. Furthermore, subjective user studies only offer limited insight into the quality of cooperation existing within the team. Specifically, we are interested in understanding the cooperative behaviors arising within the team when trained agents are paired with humans -- a problem that has been overlooked by the existing literature. To formally address this problem, we propose the concept of constructive interdependence -- measuring how much agents rely on each other's actions to achieve the shared goal -- as a key metric for evaluating cooperation in human-agent teams. We interpret interdependence in terms of action interactions in a STRIPS formalism, and define metrics that allow us to assess the degree of reliance between the agents' actions. We pair state-of-the-art agents HAT with learned human models as well as human participants in a user study for the popular Overcooked domain, and evaluate the task reward and teaming performance for these human-agent teams. Our results demonstrate that although trained agents attain high task rewards, they fail to induce cooperative behavior, showing very low levels of interdependence across teams. Furthermore, our analysis reveals that teaming performance is not necessarily correlated with task reward, highlighting that task reward alone cannot reliably measure cooperation arising in a team.
Loading