Abstract:The preservation and revitalization of endangered and extinct languages is a meaningful endeavor, conserving cultural heritage while enriching fields like linguistics and anthropology. However, these languages are typically low-resource, making their reconstruction labor-intensive and costly. This challenge is exemplified by Nüshu, a rare script historically used by Yao women in China for self-expression within a patriarchal society. To address this challenge, we introduce NüshuRescue, an AI-driven framework designed to train large language models (LLMs) on endangered languages with minimal data. NüshuRescue automates evaluation and expands target corpora to accelerate linguistic revitalization. As a foundational component, we developed NCGold, a 500-sentence Nüshu-Chinese parallel corpus, the first publicly available dataset of its kind. Leveraging GPT-4-Turbo, with no prior exposure to Nüshu and only 35 short examples from NCGold, NüshuRescue achieved 48.69% translation accuracy on 50 withheld sentences and generated NCSilver, a set of 98 newly translated modern Chinese sentences of varying lengths. In addition, we developed FastText-based and Seq2Seq models to further support research on Nüshu. NüshuRescue provides a versatile and scalable tool for the revitalization of endangered languages, minimizing the need for extensive human input. All datasets and code have been made publicly available at https://github.com/ivoryayang/NushuRescue.