Non-Isotropic Persistent Homology: Leveraging the Metric Dependency of PH

Published: 18 Nov 2023, Last Modified: 29 Nov 2023LoG 2023 PosterEveryoneRevisionsBibTeX
Keywords: Topology, Point Clouds, Geometry Processing, Persistent Homology, Metric Spaces, Simplicial Complexes, Optimal Transport
Abstract: Persistent Homology is a widely used topological data analysis tool that creates a concise description of the topological properties of a point cloud based on a specified filtration. Most filtrations used for persistent homology depend (implicitly) on a chosen metric, which is typically agnostically chosen as the standard Euclidean metric on $\mathbb{R}^n$. Recent work has tried to uncover the true metric on the point cloud using distance-to-measure functions, in order to obtain more meaningful persistent homology results. Here we propose an alternative look at this problem: we posit that information on the point cloud is lost when restricting persistent homology to a single (correct) distance function. Instead, we show how by varying the distance function on the underlying space and analysing the corresponding shifts in the persistence diagrams, we can extract additional topological and geometrical information. Finally, we numerically show that non-isotropic persistent homology can extract information on orientation, orientational variance, and scaling of randomly generated point clouds with good accuracy and conduct some experiments on real-world data.
Submission Type: Full paper proceedings track submission (max 9 main pages).
Agreement: Check this if you are okay with being contacted to participate in an anonymous survey.
Software: https://git.rwth-aachen.de/netsci/publication-2023-non-isotropic-persistent-homology
Poster: png
Poster Preview: png
Submission Number: 164
Loading