On-the-fly Preference Alignment via Principle-Guided Decoding

Published: 22 Jan 2025, Last Modified: 20 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: preference alignment, tuning-free alignment, principle-based decoding
Abstract: With the rapidly expanding landscape of large language models, aligning model generations with human values and preferences is becoming increasingly important. Popular alignment methods, such as Reinforcement Learning from Human Feedback, have shown significant success in guiding models with greater control. However, these methods require considerable computational resources, which is inefficient, and substantial collection of training data to accommodate the diverse and pluralistic nature of human preferences, which is impractical. These limitations significantly constrain the scope and efficacy of both task-specific and general preference alignment methods. In this work, we introduce On-the-fly Preference Alignment via Principle-Guided Decoding (OPAD) to directly align model outputs with human preferences during inference, eliminating the need for fine-tuning. Our approach involves first curating a surrogate solution to an otherwise infeasible optimization problem and then designing a principle-guided reward function based on this surrogate. The final decoding policy is derived by maximizing this customized reward, which exploits the discrepancy between the constrained policy and its unconstrained counterpart. OPAD directly modifies the model’s predictions during inference, ensuring principle adherence without incurring the computational overhead of retraining or fine-tuning. Experiments show that OPAD achieves competitive or superior performance in both general and personalized alignment tasks, demonstrating its efficiency and effectiveness compared to state-of-the-art baselines.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5819
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview