Multimodel Feature Reinforcement Framework Using Moore-Penrose Inverse for Big Data AnalysisDownload PDFOpen Website

2021 (modified: 12 Nov 2022)IEEE Trans. Neural Networks Learn. Syst. 2021Readers: Everyone
Abstract: Fully connected representation learning (FCRL) is one of the widely used network structures in multimodel image classification frameworks. However, most FCRL-based structures, for instance, stacked autoencoder encode features and find the final cognition with separate building blocks, resulting in loosely connected feature representation. This article achieves a robust representation by considering a low-dimensional feature and the classifier model simultaneously. Thus, a new hierarchical subnetwork-based neural network (HSNN) is proposed in this article. The novelties of this framework are as follows: 1) it is an iterative learning process, instead of stacking separate blocks to obtain the discriminative encoding and the final classification results. In this sense, the optimal global features are generated; 2) it applies Moore–Penrose (MP) inverse-based batch-by-batch learning strategy to handle large-scale data sets, so that large data set, such as Place365 containing 1.8 million images, can be processed effectively. The experimental results on multiple domains with a varying number of training samples from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\sim } 1 \,\,K$ </tex-math></inline-formula> to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\sim }2~M$ </tex-math></inline-formula> show that the proposed feature reinforcement framework achieves better generalization performance compared with most state-of-the-art FCRL methods.
0 Replies

Loading