Occlusion-aware Non-Rigid Point Cloud Registration via Unsupervised Neural Deformation Correntropy

Published: 22 Jan 2025, Last Modified: 30 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Unsupervised Deformation, Neural Implicit Representations, Correntropy, Locally Linear Reconstruction
TL;DR: This paper aims to solve the occlusion challenge in non-rigid alignment of point clouds using neural deformation correntropy.
Abstract: Non-rigid alignment of point clouds is crucial for scene understanding, reconstruction, and various computer vision and robotics tasks. Recent advancements in implicit deformation networks for non-rigid registration have significantly reduced the reliance on large amounts of annotated training data. However, existing state-of-the-art methods still face challenges in handling occlusion scenarios. To address this issue, this paper introduces an innovative unsupervised method called Occlusion-Aware Registration (OAR) for non-rigidly aligning point clouds. The key innovation of our method lies in the utilization of the adaptive correntropy function as a localized similarity measure, enabling us to treat individual points distinctly. In contrast to previous approaches that solely minimize overall deviations between two shapes, we combine unsupervised implicit neural representations with the maximum correntropy criterion to optimize the deformation of unoccluded regions. This effectively avoids collapsed, tearing, and other physically implausible results. Moreover, we present a theoretical analysis and establish the relationship between the maximum correntropy criterion and the commonly used Chamfer distance, highlighting that the correntropy-induced metric can be served as a more universal measure for point cloud analysis. Additionally, we introduce locally linear reconstruction to ensure that regions lacking correspondences between shapes still undergo physically natural deformations. Our method achieves superior or competitive performance compared to existing approaches, particularly when dealing with occluded geometries. We also demonstrate the versatility of our method in challenging tasks such as large deformations, shape interpolation, and shape completion under occlusion disturbances.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7066
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview