Abstract: Atrial fibrillation (AF) is a common arrhythmia (0.5% worldwide prevalence) associated with an increased risk of various cardiovascular disorders, including stroke. Automated routine AF detection by Electrocardiogram (ECG) is based on the analysis of one-dimensional ECG signals and requires dedicated software for each type of device, limiting its wide use, especially with the rapid incorporation of telemedicine into the healthcare system. Here, we implement a machine learning method for AF classification using the region of interest (ROI) corresponding to the long DII lead automatically extracted from DI-COM 12-lead ECG images. We observed 94.3%, 98.9%, 99.1%, and 92.2% for sensitivity, specificity, AUC, and F1 score, respectively. These results indicate that the proposed methodology performs similar to one-dimensional ECG signals as input, but does not require a dedicated software facilitating the integration into clinical practice, as ECGs are typically stored in PACS as 2D images.
0 Replies
Loading