Sharpness-Aware Minimization for Topic Models with High-Quality Document Representations

Published: 22 Jan 2025, Last Modified: 15 May 2025NAACL 2025EveryoneCC BY 4.0
Abstract: Recent advanced frameworks in topic models have significantly enhanced the performance compared to conventional probabilistic approaches. Such models, mostly constructed from neural network architecture together with other advanced techniques such as contextual embedding, optimal transport distance and pre-trained language model, etc. have effectively improved the topic quality and document topic distribution. Despite the improvements, these methods lack considerations of effective optimization for complex objective functions that contain log-likelihood and additional regularization terms. In this study, we propose to apply an efficient optimization method to improve the generalization and performance of topic models. Our approach explicitly considers the sharpness of the loss landscape during optimization, which forces the optimizer to choose directions in the parameter space that lead to flatter minima, in which the models are typically more stable and robust to small perturbations in the data. Additionally, we propose an effective strategy to select the flatness region for parameter optimization by leveraging the optimal transport distance between doc-topic distributions and doc-cluster proportions, which can effectively enhance document representation. Experimental results on popular benchmark datasets demonstrate that our method effectively improves the performance of baseline topic models.
Loading