Balanced conic rectified flow

ICLR 2025 Conference Submission2545 Authors

22 Sept 2024 (modified: 26 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image generation, generative model, rectified flow, diffusion, optimal transport, curvature, ODE
TL;DR: A rectified flow-based generative model that improves generation quality and straightens ODE solution trajectories by incorporating real images into the reflow training process.
Abstract: Rectified flow is a generative model that learns smooth transport mappings between two distributions through an ordinary differential equation (ODE). Unlike diffusion-based generative models, which require costly numerical integration of a generative ODE to sample images with state-of-the-art quality, rectified flow uses an iterative process called reflow to learn smooth and straight ODE paths. This allows for relatively simple and efficient generation of high-quality images. However, rectified flow still faces several challenges. 1) The reflow process requires a large number of generative pairs to preserve the target distribution, leading to significant computational costs. 2) Since the model is typically trained using only generated image pairs, its performance heavily depends on the 1-rectified flow model, causing it to become biased towards the generated data. In this work, we experimentally expose the limitations of the original rectified flow and propose a novel approach that incorporates real images into the training process. By preserving the ODE paths for real images, our method effectively reduces reliance on large amounts of generated data. Instead, we demonstrate that the reflow process can be conducted efficiently using a much smaller set of generated and real images. In CIFAR-10, we achieved significantly better FID scores, not only in one-step generation but also in full-step simulations, while using only $7.2\%$ of the generative pairs compared to the original method. Furthermore, our approach induces straighter paths and avoids saturation on generated images during reflow, leading to more robust ODE learning while preserving the distribution of real images.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2545
Loading