Abstract: Semi-supervised Video object segmentation is one of the most basic tasks in the field of computer vision, especially in the multi-object case. It aims to segment masks of multiple foreground objects in given video sequence with annotation mask of the first frame as prior knowledge. In this paper, we propose a novel multi-object video segmentation model. We use the U-Net architecture to obtain multi-scale spatial features. In the encoder part, the spatial attention mechanism and channel attention is used to enhance the spatial features simultaneously. We use the recurrent ConvLSTM module in the decoder to segment different object instances in one stage and keep the segmentation object consistent over time. In addition, we use three loss functions for joint training to improve the model training effect. We test our network on the popular video object segmentation dataset DAVIS2017. The experiment results demonstrate that our model achieves state-of-art performance. Moreover, our model achieves faster inference runtimes than other methods.
0 Replies
Loading