GeONet: a neural operator for learning the Wasserstein geodesicDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Wasserstein, optimal transport, neural operator, GeONet
TL;DR: We design a neural operator deep learning framework for learning the Wasserstein geodesic from any input pair of distributions.
Abstract: Optimal transport (OT) offers a versatile framework to compare complex data distributions in a geometrically meaningful way. Traditional methods for computing the Wasserstein distance and geodesic between probability measures require mesh-dependent domain discretization and suffer from the curse-of-dimensionality. We present GeONet, a mesh-invariant deep neural operator network that learns the non-linear mapping from the input pair of initial and terminal distributions to the Wasserstein geodesic connecting the two endpoint distributions. In the offline training stage, GeONet learns the saddle point optimality conditions for the dynamic formulation of the OT problem in the primal and dual spaces that are characterized by a coupled PDE system. The subsequent inference stage is instantaneous and can be deployed for real-time predictions in the online learning setting. We demonstrate that GeONet achieves comparable testing accuracy to the standard OT solvers on a simulation example and the CIFAR-10 dataset with considerably reduced inference-stage computational cost by orders of magnitude.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
5 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview