Residual Connections Harm Generative Representation Learning

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Decayed Residual Connections, Representation Learning
TL;DR: We propose decaying the identity shortcuts in residual connections to enhance abstract representations within a generative learning framework.
Abstract: We show that introducing a weighting factor to reduce the influence of identity shortcuts in residual networks significantly enhances semantic feature learning in generative representation learning frameworks, such as masked autoencoders (MAEs) and diffusion models. Our modification improves linear probing accuracy for both, notably increasing ImageNet accuracy from 67.8\% to 72.7\% for MAEs with a VIT-B/16 backbone, while also boosting generation quality for diffusion models. This significant gap suggests that, while residual connection structure serves an essential role in facilitating gradient propagation, it may have a harmful side effect of reducing capacity for abstract learning by virtue of injecting an echo of shallower representations into deeper layers. We ameliorate this downside via a fixed formula for monotonically decreasing the contribution of identity connections as layer depth increases. Our design promotes the gradual development of feature abstractions, without impacting network trainability. Analyzing the representations learned by our modified residual networks, we find correlation between low effective feature rank and downstream task performance.
Supplementary Material: pdf
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9237
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview