Reproducibility Study of "ITI-GEN: Inclusive Text-to-Image Generation"

TMLR Paper2236 Authors

16 Feb 2024 (modified: 23 May 2024)Decision pending for TMLREveryoneRevisionsBibTeX
Abstract: Text-to-image generative models often present issues regarding fairness with respect to certain sensitive attributes, such as gender or skin tone. This study aims to reproduce the results presented in "ITI-GEN: Inclusive Text-to-Image Generation" by Zhang et al. (2023), which introduces a model to improve inclusiveness in these kinds of models. We show that most of the claims made by the authors about ITI-GEN hold: it improves the diversity and quality of generated images, it is scalable to different domains, it has plug-and-play capabilities, and it is efficient from a computational point of view. However, ITI-GEN sometimes uses undesired attributes as proxy features and it is unable to disentangle some pairs of (correlated) attributes such as gender and baldness. In addition, when the number of considered attributes increases, the training time grows exponentially and ITI-GEN struggles to generate inclusive images for all elements in the joint distribution. To solve these issues, we propose using Hard Prompt Search with negative prompting, a method that does not require training and that handles negation better than vanilla Hard Prompt Search. Nonetheless, Hard Prompt Search (with or without negative prompting) cannot be used for continuous attributes that are hard to express in natural language, an area where ITI-GEN excels as it is guided by images during training. Finally, we propose combining ITI-GEN and Hard Prompt Search with negative prompting.
Submission Length: Regular submission (no more than 12 pages of main content)
Previous TMLR Submission Url: https://openreview.net/forum?id=d3Vj360Wi2
Changes Since Last Submission: 1. We deanonymized the submission (i.e., authors' names, URL to our public GitHub repository). 2. We added an _Acknowledgements_ section. 3. In section 3.5, we provided additional information regarding the compute system used (i.e., name, location).
Code: https://github.com/amonroym99/iti-gen-reproducibility
Assigned Action Editor: ~Lei_Li11
Submission Number: 2236
Loading