Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Large Language Model (LLM), instruction tuning, multi-modality learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We present LLaMA-Adapter, a lightweight adaption method to efficiently fine-tune LLaMA into an instruction-following model and a multi-modal LLM.
Abstract: With the rising tide of large language models (LLMs), there has been a growing interest in developing general-purpose instruction-following models, e.g., ChatGPT. To this end, we present LLaMA-Adapter, a lightweight adaption method for efficient instruction tuning of LLaMA. Using 52K self-instruct demonstrations, LLaMA-Adapter only introduces 1.2M learnable parameters upon the frozen LLaMA 7B model, and costs less than one hour for fine-tuning. Specifically, a zero-initialized attention mechanism is proposed. It adopts a learnable zero gating to adaptively inject the instructional cues into LLaMA within self-attention layers, contributing to a stable training process and superior final performance. In this way, LLaMA-Adapter can generate high-quality responses to diverse language instructions, comparable to Alpaca with fully fine-tuned 7B parameters. Besides language commands, by incorporating an image encoder, our approach can be simply extended to a multi-modal LLM for image-conditioned instruction following, which achieves superior multi-modal reasoning capacity on several popular benchmarks (MME, MMBench, LVLM-eHub). Furthermore, we also verify the proposed zero-initialized attention mechanism for fine-tuning other pre-trained models (ViT, RoBERTa, CLIP) on traditional vision and language tasks, demonstrating the effectiveness and generalizability of our approach. Code and models are released at https://github.com/OpenGVLab/LLaMA-Adapter.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 2348
Loading