Bayesian Numerical Integration with Neural NetworksDownload PDF

Published: 08 May 2023, Last Modified: 03 Jul 2024UAI 2023Readers: Everyone
Keywords: numerical integration, Bayesian neural networks, Stein operator, Laplace approximation
TL;DR: We propose a novel architecture for neural networks for numerical integration based on the Stein operator with an approximation of the Bayesian posterior based on the Laplace approximation.
Abstract: Bayesian probabilistic numerical methods for numerical integration offer significant advantages over their non-Bayesian counterparts: they can encode prior information about the integrand, and can quantify uncertainty over estimates of an integral. However, the most popular algorithm in this class, Bayesian quadrature, is based on Gaussian process models and is therefore associated with a high computational cost. To improve scalability, we propose an alternative approach based on Bayesian neural networks which we call Bayesian Stein networks. The key ingredients are a neural network architecture based on Stein operators, and an approximation of the Bayesian posterior based on the Laplace approximation. We show that this leads to orders of magnitude speed-ups on the popular Genz functions benchmark, and on challenging problems arising in the Bayesian analysis of dynamical systems, and the prediction of energy production for a large-scale wind farm.
Supplementary Material: pdf
Other Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/bayesian-numerical-integration-with-neural/code)
0 Replies

Loading